Abstract
A contact Riemannian manifold, whose complex structure is not necessarily integrable, is the generalization of the notion of a pseudohermitian manifold in CR geometry. The Tanaka–Webster–Tanno connection plays the role of the Tanaka–Webster connection for a pseudohermitian manifold. Conformal transformations and the Yamabe problem are also defined naturally in this setting. By using special frames and normal coordinates on a contact Riemannian manifold, we prove that if the complex structure is not integrable, the Yamabe invariant on a contact Riemannian manifold is always less than the Yamabe invariant of the Heisenberg group. So the Yamabe problem on a contact Riemannian manifold is always solvable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.