Abstract

This work deals with special decomposition techniques for the large quadratic program arising in training support vector machines. These approaches split the problem into a sequence of quadratic programming (QP) subproblems which can be solved by efficient gradient projection methods recently proposed. Owing to the ability of decomposing the problem into much larger subproblems than standard decomposition packages, these techniques show promising performance and are well suited for parallelization. Here, we discuss a crucial aspect for their effectiveness: the selection of the working set; that is, the index set of the variables to be optimized at each step through the QP subproblem. We analyze the most popular working set selections and develop a new selection strategy that improves the convergence rate of the decomposition schemes based on large sized working sets. The effectiveness of the proposed strategy within the gradient projection-based decomposition techniques is shown by numerical experiments on large benchmark problems, both in serial and in parallel environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.