Abstract

Decomposition techniques are used to speed up training support vector machines but for linear programming support vector machines (LP-SVMs) direct implementation of decomposition techniques leads to infinite loops. To solve this problem and to further speed up training, in this paper, we propose an improved decomposition techniques for training LP-SVMs. If an infinite loop is detected, we include in the next working set all the data in the working sets that form the infinite loop. To further accelerate training, we improve a working set selection strategy: at each iteration step, we check the number of violations of complementarity conditions and constraints. If the number of violations increases, we conclude that the important data are removed from the working set and restore the data into the working set. The computer experiments demonstrate that training by the proposed decomposition technique with improved working set selection is drastically faster than that without using the decomposition technique. Furthermore, it is always faster than that without improving the working set selection for all the cases tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.