Abstract
Abstract It is well known that a good crystallographic compatibility between austenite and martensite in Ni–Ti-based shape memory alloys results in narrow thermal hystereses (e.g. Ball and James, Arch. Ration. Mech. Anal., 1987). The present work suggests that a good crystallographic fit is moreover associated with a small mechanical hysteresis width, observed during a forward and reverse stress-induced transformation. Furthermore, shape memory alloys with a good crystallographic fit show smaller transformation strains. The results obtained in the present study suggest that these correlations are generic and apply to binary Ni–Ti (with varying Ni contents) and quaternary Ni–Ti–Cu–X (X = Cr, Fe, V) alloys. For binary Ni–Ti, it was observed that Ni-rich compositions (good lattice fit) show a lower accummulation of irreversible strains during pseudoelastic cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.