Abstract
Due to their large latent heats, pseudoelastic Ni–Ti-based shape memory alloys (SMAs) are attractive candidate materials for ferroic cooling, where elementary solid-state processes like martensitic transformations yield the required heat effects. The present work aims for a chemical and microstructural optimization of Ni–Ti for ferroic cooling. A large number of Ni–Ti-based alloy compositions were evaluated in terms of phase transformation temperatures, latent heats, mechanical hysteresis widths and functional stability. The aim was to identify material states with superior properties for ferroic cooling. Different material states were prepared by arc melting, various heat treatments and thermo-mechanical processing. The cooling performance of selected materials was assessed by differential scanning calorimetry, uniaxial tensile loading/unloading, and by using a specially designed ferroic cooling demonstrator setup. A Ni[Formula: see text]Ti[Formula: see text]Cu5V[Formula: see text] SMA was identified as a potential candidate material for ferroic cooling. This material combines extremely stable pseudoelasticity at room temperature and a very low hysteresis width. The ferroic cooling efficiency of this material is four times higher than in the case of binary Ni–Ti.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.