Abstract
A simple and accurate model is presented for computation of the electromagnetic induction (EMI) resonant frequencies of canonical conducting and ferrous targets, in particular, finite-length cylinders and rings. The imaginary resonant frequencies correspond to the well known exponential decay constants of interest for time-domain EMI interaction with conducting and ferrous targets. The results of the simple model are compared to data computed numerically, via method-of-moments (MoM) and finite-element models. Moreover, the simple model is used to fit measured wideband EMI data from ferrous cylindrical targets (in terms of a small number of parameters). It is also demonstrated that the general model for the magnetic-dipole magnetization, in terms of a frequency-dependent diagonal dyadic, is applicable to general rotationally symmetric targets (not just cylinders and rings).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.