Abstract

A unit vector field X on a Riemannian manifold determines a submanifold in the unit tangent bundle. The volume of X is the volume of this submanifold for the induced Sasaki metric. It is known that the parallel fields are the trivial minima. In this paper, we obtain a lower bound for the volume in terms of the integrals of the 2i-symmetric functions of the second fundamental form of the orthogonal distribution to the field X. In the spheres ${\textbf {S}}^{2k+1}$, this lower bound is independent of X. Consequently, the volume of a unit vector field on an odd-sphere is always greater than the volume of the radial field. The main theorem on volumes is applied also to hyperbolic compact spaces, giving a non-trivial lower bound of the volume of unit fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call