Abstract
In the present paper, we give an invariant on isometric immersions into spaces of constant sectional curvature. This invariant is a direct consequence of the Gauss equation and the Codazzi equation of isometric immersions. We apply this invariant on some examples. Further, we apply it to codimension 1 local isometric immersions of 2-step nilpotent Lie groups with arbitrary leftinvariant Riemannian metric into spaces of constant nonpositive sectional curvature. We also consider the more general class, namely, three-dimensional Lie groups G with nontrivial center and with arbitrary left-invariant metric. We show that if the metric of G is not symmetric, then there are no local isometric immersions of G into Q c 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.