Abstract

Analysis of recent super H-mode experiments on DIII-D shows that high rotation, not high pedestal, plays the essential role in achieving very high confinement . Very high confinement is reached early on in the H-mode phase of these discharges, when the pedestal is still very low, but after the toroidal rotation has already built-up to very high levels in the core. As the discharge evolves, the rotation drops, and so does the energy confinement, despite a sustained very high pressure pedestal. During this evolution, the confinement quality is linearly correlated with the core toroidal rotation, which varies according to different levels of injected neutral beam torque per particle. Core transport modeling shows that the contribution from rotation in the shear is responsible for confinement quality significantly in excess of standard H-mode ().

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.