Abstract

Plastic pollution is overflowing in rivers. A limited understanding of the physics of plastic transport in rivers hinders monitoring, the prediction of plastic fate and restricts the implementation of effective mitigation strategies. This study investigates two unexplored aspects of plastic transport dynamics across the near-surface, suspended and bed load layers: (i) the complex settling behaviour of plastics and (ii) their influence on plastic transport in river-like flows. Through hundreds of settling tests and thousands of 3D reconstructed plastic transport experiments, our findings show that plastics exhibit unique settling patterns and orientations, due to their geometric anisotropy, revealing a multimodal distribution of settling velocities. In the transport experiments, particle-bed interactions enhanced mixing beyond what established turbulent transport theories (Rouse profile) could predict in low-turbulence conditions, which extends the bed load layer beyond the classic definition of the bed load layer thickness for natural sediments. We propose a new vertical structure of turbulent transport equation that considers the stochastic nature of heterogeneous negatively buoyant plastics and their singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.