Abstract
We establish a number of foundational results on Poincaré spaces which result in several applications. One application settles an old conjecture of C.T.C. Wall in the affirmative. Another result shows that for any natural number n n , there exists a finite CW pair ( X , Y ) (X,Y) satisfying relative Poincaré duality in dimension n n with the property that Y Y fails to satisfy Poincaré duality. We also prove a relative version of a result of Gottlieb about Poincaré duality and fibrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.