Abstract
SUMMARYThe phase velocity of surface waves can be directly determined from the amplitude and phase of the regional wavefield using the Helmholtz equation. However, the Helmholtz equation involves estimating the Laplacian of the amplitude field, a challenging operation to perform on noisy and sparsely sampled seismic data. For this reason, the amplitude information is often discarded. In that case, phase-velocity maps are reconstructed with the eikonal equation, which relates the local phase slowness to the gradient of the phase. Here, we derive analytical expression of the errors arising from neglecting the amplitude of the wavefield in eikonal tomography. In general, these errors are quite strong but they vary sinusoidally with the wave propagation direction. Consequently, if the azimuthal coverage is good, they will average out, and unbiased phase-velocity maps can be obtained with eikonal tomography. We numerically validate these results with a synthetic tomography experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.