Abstract


 Eikonal tomography has become a popular methodology for deriving phase velocity maps from surface wave phase delay measurements. Its high efficiency makes it popular for handling datasets deriving from large-N arrays, in particular in the ambient-noise tomography setting. However, the results of eikonal tomography are crucially dependent on the way in which phase delay measurements are predicted from data, a point which has not been thoroughly investigated. In this work, I provide a rigorous formulation for eikonal tomography using Gaussian processes (GPs) to smooth observed phase delay measurements, including uncertainties. GPs allow the posterior phase delay gradient to be analytically derived. From the phase delay gradient, an excellent approximate solution for phase velocities can be obtained using the saddlepoint method. The result is a fully Bayesian result for phase velocities of surface waves, incorporating the nonlinear wavefront bending inherent in eikonal tomography, with no sampling required. The results of this analysis imply that the uncertainties reported for eikonal tomography are often underestimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.