Abstract

The kinetics of grain growth in real systems is influenced by several unknown factors, making a theoretical treatment very difficult. Idealized grain growth, assuming all grain boundaries to have the same energy and mobility (mobility M = k/ρ, where k is a constant and ρ is grain boundary curvature) can be treated theoretically, but the results obtained can only be compared to numerical grain growth simulations, as ideal grain growth scarcely exists in nature. The validity of the simulation techniques thus becomes of great importance. In the present investigation computer simulations of grain growth in two dimensions using Monte Carlo simulations and the grain boundary tracking technique have been investigated and compared in small grain systems, making it possible to follow the evolution of each grain in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call