Abstract

Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are frequently found in brain tumors, and the resulting onco–metabolite, 2–hydroxyglutarate (2HG), has been suggested to be a potential diagnostic and prognostic biomarker of the diseases. Indeed, recent studies have demonstrated the feasibility of non–invasively detecting 2HG by using proton magnetic resonance spectroscopy (1H–MRS). Due to severe spectral overlaps of 2HG with its background metabolites and spectral baselines, however, the majority of those previous studies employed spectral editing methods with long echo times (TEs) instead of the most commonly used short TE approach with spectral fitting. Consequently, the results obtained with spectral editing methods may potentially be prone to errors resulting from substantial signal loss due to relaxation. Given that the spectral region where the main signal of 2HG resides is particularly sensitive to spectral baseline in metabolite quantification, we have investigated the impact of incorporating voxel–specifically measured baselines into the spectral basis set on the performance of the conventional short TE approach in 2HG detection in rodent models (Fisher 344 rats; n = 19) of IDH1/2 mutant–overexpressing F98 glioma at 9.4T. Metabolite spectra were acquired (SPECIAL sequence) for a tumor region and the contralateral normal region of the brain for each animal. For the estimation of spectral baselines metabolite–nulled spectra were obtained (double–inversion–recovery SPECIAL sequence) for each individual voxels. Data were post–processed with and without the measured baselines using MRUI and LCModel—the two most widely used data post–processing packages. Our results demonstrate that in–vivo detection of 2HG using the conventional short TE approach is challenging even at 9.4T. However, incorporation of voxel–specifically measured spectral baselines may potentially improve its performance. Upon more thorough validation in a larger number of animals and more importantly in human patients, the potential utility of the proposed short TE acquisition with voxel–specific baseline measurement approach in 2HG detection may need to be considered in the study design.

Highlights

  • Glioblastomas and malignant gliomas are the common phenotypes of brain tumors

  • The animal research protocol was approved by the Institutional Animal Care and Use Committee (IACUC) of Seoul National University Hospital

  • To express IDH1 wild–type (IDH1–WT), IDH1–R132H, IDH2 wild–type (IDH2–WT), IDH2–R172K, and Mock transgenes, F98 cells were transfected with lentivirus for 24 h in the presence of 4–8 μg/mL polybrene

Read more

Summary

Introduction

Glioblastomas and malignant gliomas are the common phenotypes of brain tumors. They are the most aggressive diffuse gliomas of astrocytic lineage [1, 2] with poor prognosis and lower survival. For IDH2 mutations, the disease–associated single residual mutations are highly present at the R172 residue (predominantly R172K) [4, 6]. These IDH1/2 mutants acquire a new enzymatic ability to catalyze the NADPH–dependent reduction of α– KG to 2–hydroxyglutarate (2HG) [7]. Because it is an error product of abnormal metabolism in brain tumors with IDH mutation, 2HG is considered an onco–metabolite [8]. Together with the implication of the IDH mutational status with patient survival duration [4], developing a noninvasive means of detecting 2HG would have a great diagnostic and prognostic value [9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.