Abstract

In the last few years, deep reinforcement learning has been proposed as a method to perform online learning in energy-efficiency scenarios such as HVAC control, electric car energy management, or building energy management, just to mention a few. On the other hand, quantum machine learning was born during the last decade to extend classic machine learning to a quantum level. In this work, we propose to study the benefits and limitations of quantum reinforcement learning to solve energy-efficiency scenarios. As a testbed, we use existing energy-efficiency-based reinforcement learning simulators and compare classic algorithms with the quantum proposal. Results in HVAC control, electric vehicle fuel consumption, and profit optimization of electrical charging stations applications suggest that quantum neural networks are able to solve problems in reinforcement learning scenarios with better accuracy than their classical counterpart, obtaining a better cumulative reward with fewer parameters to be learned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.