Abstract

Automatic action recognition in videos is a challenging computer vision task that has become an active research area in recent years. Existing strategies usually use kernel-based learning algorithms that considers a simple combination of different features completely disregarding how such features should be integrated to fit the given problem. Since a given feature is most suitable to describe a given image/video property, the adaptive weighting of such features can improve the performance of the learning algorithm. In this paper, we investigated the use of the Multiple Kernel Learning (MKL) algorithm to adaptive search for the best linear relation among the considered features. MKL is an extension of the support vector machines (SVMs) to work with a weighted linear combination of several single kernels. This approach allows to simultaneously estimate the weights for the multiple kernels combination as well as the underlying SVM parameters. In order to prove the validity of the MKL approach, we considered a descriptor composed of multiple features aligned with dense trajectories. We experimented our approach on a database containing 36 cooking actions. Results confirm that the use of MKL improves the classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.