Abstract
Heart Failure (HF) is one of the most common causes of hospitalization and is burdened by short-term (in-hospital) and long-term (6-12month) mortality. Accurate prediction of HF mortality plays a critical role in evaluating early treatment effects. However, due to the lack of a simple and effective prediction model, mortality prediction of HF is difficult, resulting in a low rate of control. To handle this issue, we propose a Weight-based Multiple Empirical Kernel Learning with Neighbor Discriminant Constraint (WMEKL-NDC) method for HF mortality prediction. In our method, feature selection by calculating the F-value of each feature is first performed to identify the crucial clinical features. Then, different weights are assigned to each empirical kernel space according to the centered kernel alignment criterion. To make use of the discriminant information of samples, neighbor discriminant constraint is finally integrated into multiple empirical kernel learning framework. Extensive experiments were performed on a real clinical dataset containing 10, 198 in-patients records collected from Shanghai Shuguang Hospital in March 2009 and April 2016. Experimental results demonstrate that our proposed WMEKL-NDC method achieves a highly competitive performance for HF mortality prediction of in-hospital, 30-day and 1-year. Compared with the state-of-the-art multiple kernel learning and baseline algorithms, our proposed WMEKL-NDC is more accurate on mortality prediction Moreover, top 10 crucial clinical features are identified together with their meanings, which are very useful to assist clinicians in the treatment of HF disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.