Abstract
The broader goal of this paper is to provide social researchers with some analytical guidelines when investigating structural equation models (SEM) with predominantly a formative specification. This research is the first to investigate the robustness and precision of parameter estimates of a formative SEM specification. Two distinctive scenarios (normal and non-normal data scenarios) are compared with the aid of a Monte Carlo simulation study for various covariance-based structural equation modeling (CBSEM) estimators and various partial least squares path modeling (PLS-PM) weighting schemes. Thus, this research is also one of the first to compare CBSEM and PLS-PM within the same simulation study. We establish that the maximum likelihood (ML) covariance-based discrepancy function provides accurate and robust parameter estimates for the formative SEM model under investigation when the methodological assumptions are met (e.g., adequate sample size, distributional assumptions, etc.). Under these conditions, ML-CBSEM outperforms PLS-PM. We also demonstrate that the accuracy and robustness of CBSEM decreases considerably when methodological requirements are violated, whereas PLS-PM results remain comparatively robust, e.g. irrespective of the data distribution. These findings are important for researchers and practitioners when having to choose between CBSEM and PLS-PM methodologies to estimate formative SEM in their particular research situation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have