Abstract

AbstractStructural Health Monitoring of civil infrastructures often suffers from the limited availability of damage labelled data. The work here seeks to overcome this issue by using Transfer Learning approaches, in the form of Domain Adaptation, for leveraging information from a source structure with determined health‐state labels to make inferences on an unlabeled monitored structure. The idea is to exploit source data to train a Machine Learning algorithm and achieve improved early‐stage damage detection capabilities across a population of bridges. To account for differences in the underlying distributions of each structure, Transfer Learning is seen as a strategy enabling population‐level bridge SHM. In this paper, the natural frequencies obtained from multiple vibration measurements are extracted to characterise different domains during pristine and abnormal conditions. Such damage‐sensitive features are aligned via Domain Adaptation and used to train a standard classifier within a shared feature space. The methodology is validated on the heterogeneous population composed of the Z24 and S101 bridges. The results prove the effectiveness to successfully exchange damage labels, thus increasing available information for health‐state inference for SHM applications with sparce datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.