Abstract
The recent application of Convolutional Neural Networks (CNNs) to Human Pose Estimation (HPE) from static images have improved estimation accuracy compared to traditional HPE approaches. In particular, a recent novel HPE approach combines a traditional graphical model with CNNs to result in state-of-the-art HPE accuracy, improving the estimation accuracy compared to using either approach alone. However, the accuracy of the CNN used in the hybrid model has not yet been explored, and this paper evaluates the use of CNNs in the hybrid model through investigating different network configurations and fine-tuning the network using pre-trained weights obtained from a large labeled dataset. The proposed CNN configurations not only improve the accuracy of the existing network by up to 2% but also uses fewer parameters, resulting in a higher HPE accuracy and simpler network structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.