Abstract

Two NiO based oxygen carrier materials (OCMs) were synthesized and tested for use as potential materials in chemical looping reforming applications. Redox properties of these materials were evaluated in successive methane reduction – air oxidation (redox) cycles in a thermogravimetric analyzer unit (TGA) and an in situ magnetometer. Zirconia supported (Ni–Zr) OCM exhibited excellent redox activity (high degree of reduction and oxidation) and stability during ten CH4 reduction-air oxidation cycles. The degree of reduction of the alumina supported (Ni–Al) OCM increased gradually during cycling experiments, due to the formation of easily reducible NiO from nickel aluminate species with successive reduction/re-oxidation. The Ni–Al OCM exhibited excellent stability with respect to oxidation resulting in nearly complete oxidation of reduced Ni in all cycles. Results from measurements in the magnetometer were in good agreement with those in the TGA for the Ni–Zr OCM (both with regards to the degree of reduction and oxidation) and the degree of oxidation of the Ni–Al OCM. A moderate crystallite growth with cycling was observed for Ni–Al, whereas a decrease in nickel crystallite size was observed for Ni–Zr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.