Abstract

High-torque permanent magnet synchronous electric motors are widely used in many industries due to their minimum weight and size parameters, at maximum torque, low vibrations and high efficiency. A special effect from the use of high-torque permanent magnet synchronous electric motors can be achieved in the aerospace industry as electric motors for various executive units, for example, a flaps drive, slats or elevators. One of the main problems in high-torque permanent magnet synchronous electric motors design is hysteresis and eddy currents losses. To minimize hysteresis and eddy current losses it is possible to use amorphous low-coercivity materials in high-torque permanent magnet synchronous electric motors magnetic cores. To assess the effectiveness of using amorphous low-coercivity materials, comparisons are made of high-torque permanent magnet synchronous electric motors with a magnetic core made from amorphous low-coercivity materials with a similar high-torque permanent magnet synchronous electric motors, whose magnetic core is made of electrotechnical steel. A multi-polar high-torque permanent magnet synchronous electric motors with a fractional toothed winding is considered. The studies results show the possibility of creating high-torque permanent magnet synchronous electric motors with magnetic cores from amorphous low-coercivity materials and the effectiveness of using amorphous low-coercivity materials in high-torque permanent magnet synchronous electric motors has been proven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call