Abstract

Continuous ultrasonic welding is an attractive welding technique for thermoplastic composite structures. In this process, a metallic sonotrode connected to a piezoelectric transducer and to a press moves along the parts to be welded applying ultrasonic vibrations and a static welding force on the welding overlap. Thus far, the research carried out on this topic makes use of sonotrodes featuring a flat contact surface with the parts to be welded, which limits the use of the process to the welding of overlaps with no curvature in the welding direction. With the final aim of assessing whether this process can also be applied to curved structures, this paper explores the feasibility of using a rounded sonotrode for continuous ultrasonic welding of thermoplastic composites. The main conclusions drawn from the results obtained in this research is that it is indeed possible to continuously weld thermoplastic composite panels with a rounded sonotrode and that high-quality welds can be obtained from such a process. Furthermore, the use of a rounded sonotrode has the positive effect of lowering the temperatures at the welding interface as well as the temperatures within the adherends. On the other hand, the use of such sonotrode leads to a decreased, although still competitive, welding speed and, potentially, an increased welding force, thereby setting boundary conditions that need to be considered for each specific application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.