Abstract

The two-time non-equilibrium correlation and response functions in 1D kinetic classical spin systems with non-conserved dynamics and quenched to their zero-temperature critical point are studied. The exact solution of the kinetic Ising model with Glauber dynamics for a wide class of initial states allows for an explicit test of the universality of the non-equilibrium limit fluctuation–dissipation ratio X∞. It is shown that the value of X∞ depends on whether the initial state has finitely many domain walls or not and thus two distinct dynamic universality classes can be identified in this model. Generic 1D kinetic spin systems with non-conserved dynamics fall into the same universality classes as the kinetic Glauber–Ising model provided the dynamics is invariant under the C-symmetry of simultaneous spin and magnetic-field reversal. While C-symmetry is satisfied for magnetic systems, it need not be for lattice gases which may therefore display hitherto unexplored types of non-universal kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call