Abstract

In this work, we develop a Lagrangian reduction theory for covariant field theories with gauge symmetries. These symmetries are modeled by a Lie group fiber bundle acting fiberwisely on a configuration bundle. In order to reduce the variational principle, we utilize generalized principal connections, a type of Ehresmann connections that are equivariant by the fiberwise action. After obtaining the reduced equations, we give the reconstruction condition and we relate the vertical reduced equation with the Noether theorem. Lastly, we illustrate the theory with several examples, including the classical case (Lagrange–Poincaré reduction), Electromagnetism, symmetry-breaking and non-Abelian gauge theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.