Abstract

We study the universality and membership problems for gate sets consisting of a finite number of quantum gates. Our approach relies on the techniques from compact Lie group theory. We also introduce an auxiliary problem called the subgroup universality problem, which helps in solving some instances of the membership problem and can be of interest on its own. The resulting theorems are mainly formulated in terms of centralizers and the adjoint representations of a given set of quantum gates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.