Abstract

The capacity of a quantum gate to produce entangled states on a bipartite system is quantified in terms of the entangling power. This quantity is defined as the average of the linear entropy of entanglement of the states produced after applying a quantum gate over the whole set of separable states. Here we focus on symmetric two-qubit quantum gates, acting on the symmetric two-qubit space, and calculate the entangling power in terms of the appropriate local-invariant. A geometric description of the local equivalence classes of gates is given in terms of the $\mathfrak{su}(3)$ Lie algebra root vectors. These vectors define a primitive cell with hexagonal symmetry on a plane, and through the Weyl group the minimum area on the plane containing the whole set of locally equivalent quantum gates is identified. We give conditions to determine when a given quantum gate produces maximally entangled states from separable ones (perfect entanglers). We found that these gates correspond to one fourth of the whole set of locally-distinct quantum gates. The theory developed here is applicable to three-level systems in general, where the non-locality of a quantum gate is related to its capacity to perform non-rigid transformations on the Majorana constellation of a state. The results are illustrated by an anisotropic Heisenberg model, the Lipkin-Meshkov-Glick model, and two coupled quantized oscillators with cross-Kerr interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.