Abstract
Given a graph property $\mathcal{P}$, it is interesting to determine the typical structure of graphs that satisfy $\mathcal{P}$. In this paper, we consider monotone properties, that is, properties that are closed under taking subgraphs. Using results from the theory of graph limits, we show that if $\mathcal{P}$ is a monotone property and $r$ is the largest integer for which every $r$-colorable graph satisfies $\mathcal{P}$, then almost every graph with $\mathcal{P}$ is close to being a balanced $r$-partite graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.