Abstract

We prove that for every ordered matching $H$ on $t$ vertices, if an ordered $n$-vertex graph $G$ is $\varepsilon$-far from being $H$-free, then $G$ contains $\text{poly}(\varepsilon) n^t$ copies of $H$. This proves a special case of a conjecture of Tomon and the first author. We also generalize this statement to uniform hypergraphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.