Abstract
A limited number of bacterial strains usually grown under nutrient limitation secrete rhamnolipids (RLs), which are recorded as virulence factors that are implicated in the pathogenicity of a microorganism. The non-pathogenic T. thermophilus HB8 produces extracellular rhamnolipids (TthRLs) under defined cultivation conditions using sunflower seed oil and sodium gluconate as carbon sources. In particular, the secreted TthRLs have been isolated, purified and identified with ATR-FTIR. Their effects on the cells' viability were examined when they were supplemented in a culture of human skin fibroblasts. Purified TthRLs triggered a sequence of rapid and pronounced morphological alterations characterized by transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation, rounding up, distortion of nuclei and loss of lamellar processes, and finally disruption of membrane. The addition of TthRLs in the cultured fibroblasts caused cytotoxicity, in contrast to that of rhamnose that stimulated viability, as it was assessed by MTT test. These results revealed that among the constituents of RLs that are implicated in the cytotoxicity, it has to be attributed to the lipidic chain variation and not to the carbohydrate part. TthRLs cytotoxicity on fibroblasts is comparable, and provoked similar effects, to that caused by saponin white, a known surfactant. TthRLs secretion might be a crucial point for the transformation of a non-pathogenic bacterium to a pathogenic one under certain environmental conditions favoring their secretion. RLs secretion in the microorganism's world might be a general route for the passage in the pathogenicity to ensure their survival under nutrient limitation conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.