Abstract

Saturated very long chain fatty acids (fatty acids with greater than 22 carbon atoms; VLCFA) accumulate in peroxisomal disorders, but there is little information on their turnover in patients. To determine the suitability of using stable isotope-labeled VLCFA in patients with these disorders, the metabolism of 22-methyl[23,23,23-2H3]tricosanoic (iso-lignoceric) acid was studied in rats in vivo and in human skin fibroblasts in culture. The deuterated iso-VLCFA was degraded to the corresponding 16- and 18-carbon iso-fatty acids by rats in vivo and by normal human skin fibroblasts in culture, but there was little or no degradation in peroxisome-deficient (Zellweger's syndrome) fibroblasts, indicating that its oxidation was peroxisomal. Neither the 14-, 20-, and 22-carbon iso-fatty acids nor the corresponding odd-chain metabolites could be detected. In the rat, the organ containing most of the iso-lignoceric acid, and its breakdown products, was the liver, whereas negligible amounts were detected in the brain, suggesting that little of the fatty acid crossed the blood-brain barrier. Our data indicate that VLCFA labeled with deuterium at the omega-position of the carbon chain are suitable derivatives for the in vivo investigation of patients with defects in peroxisomal beta-oxidation because they are metabolized by the same pathways as the corresponding n-VLCFA. Moreover, as iso-VLCFA and their beta-oxidation products are readily separated from the corresponding n-fatty acids by normal chromatographic procedures, the turnover of VLCFA can be more precisely measured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call