Abstract

Urban overheating and energy imbalances are severe environmental concerns. The role of urban sprawl patterns in the formation of Heat Island has recently absorbed the researchers’ interest. The research focuses on metropolitan areas with a range of urban typologies. However, there still is a knowledge gap in how UHI responds to different urban typologies. The interaction between urban configurations and heat island characteristics is explored in Sydney. A combination of terrestrial surveys and modelling techniques was implemented, and results were extracted based on simulation results. The Urban Taskforce Australia suggested the applied categorization methods that follow Stewart and Oke’s Local Climate Zones (LCZs) scheme. We assessed eleven urban designs on ambient air temperature, wind characteristics, heat intensity, and outdoor thermal comfort over three summer days. We correlated results to density and the built-up ratio in all configurations and found that the maximum configurational impact on the heat island reached 2.33 °C. Configurations with a built-up ratio between 0.37 to 0.5 present a sharp downward trend in the average wind speed value and indicate a minimum with a built-up ratio of 0.63. Wind maps present an increase in layouts with built-up ratios of 0.23 to 0.37, whereas they decreased with built-up ratios of higher than 0.43. The average temperature decrease in high-rise compact configurations was 1.12 °C per hour. This record is substantially higher than its open counterparts. The study showed the importance of urban configuration on thermal environmental quality. In addition, implementing appropriate urban design parameters is vital to mitigate heat islands and improve environmental thermal comfort in urban areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.