Abstract
An investigation of the ultimate tensile strength and fracture strain of a fiber-reinforced Ti-matrix composite has been conducted. Comparisons have been made between experimental measurements and predictions of two micromechanical models: one assumes that the fibers behave independently of the matrix, i.e. as in a dry fiber bundle, and the other assumes frictional coupling between the fibers and the matrix, characterized by a constant interfacial sliding stress. To conduct such comparisons, a number of constituent properties have been measured, including the fiber strength distribution, the thermal residual stress and the interfacial sliding stress. In addition, the effects of gauge length on the tensile properties of the composite have been studied. The comparisons indicate that the model prediction based on frictional coupling provide a good representation of the experimental results. In constrast, predictions based on the dry fiber bundle approach strongly underestimate both the ultimate strength and the fracture strain and predict a gaunge length dependence that is inconsistent with the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.