Abstract
A novel symplectic superposition method has been proposed and developed for plate and shell problems in recent years. The method has yielded many new analytic solutions due to its rigorousness. In this study, the first endeavor is made to further developed the symplectic superposition method for the free vibration of rectangular thin plates with mixed boundary constraints on an edge. The Hamiltonian system-based governing equation is first introduced such that the mathematical techniques in the symplectic space are applied. The solution procedure incorporates separation of variables, symplectic eigen solution and superposition. The analytic solution of an original problem is finally obtained by a set of equations via the equivalence to the superposition of some elaborated subproblems. The natural frequency and mode shape results for representative plates with both clamped and simply supported boundary constraints imposed on the same edge are reported for benchmark use. The present method can be extended to more challenging problems that cannot be solved by conventional analytic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.