Abstract
In this paper, we study Newton's method for finding a singularity of a differentiable vector field defined on a Riemannian manifold. Under the assumption of invertibility of the covariant derivative of the vector field at its singularity, we show that Newton's method is well defined in a suitable neighborhood of this singularity. Moreover, we show that the sequence generated by Newton's method converges to the solution with superlinear rate.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have