Abstract

We prove that every integer$n\geqslant 10$such that$n\not \equiv 1\text{ mod }4$can be written as the sum of the square of a prime and a square-free number. This makes explicit a theorem of Erdős that every sufficiently large integer of this type may be written in such a way. Our proof requires us to construct new explicit results for primes in arithmetic progressions. As such, we use the second author’s numerical computation regarding the generalised Riemann hypothesis to extend the explicit bounds of Ramaré–Rumely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.