Abstract

This paper is concerned with the number and distribution of limit cycles of a perturbed cubic Hamiltonian system which has 5 centers and 4 saddle points. The singular point and singular close orbits’ stability theory and perturbation skills of differential equations are applied to study the Hopf, homoclinic loop and heteroclinic loop bifurcation of such system under Z 4 -equivariant quintic perturbation. It is found that the perturbed system has at least 16 limit cycles bifurcated from the focus. Further, at least 14 limit cycles with three different distributions appear in the heteroclinic loops bifurcation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.