Abstract
It is well known that the optimal transportation plan between two probability measures mu and nu is induced by a transportation map whenever mu is an absolutely continuous measure supported over a compact set in the Euclidean space and the cost function is a strictly convex function of the Euclidean distance. However, when mu and nu are both discrete, this result is generally false. In this paper, we prove that, given any pair of discrete probability measures and a cost function, there exists an optimal transportation plan that can be expressed as the sum of two deterministic plans, i.e., plans induced by transportation maps. As an application, we estimate the infinity-Wasserstein distance between two discrete probability measures mu and nu with the p-Wasserstein distance, times a constant depending on mu , on nu , and on the fixed cost function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.