Abstract

The aim of this work is to investigate experimentally and numerically the modifications of both strength and ductility after processing by severe plastic deformation, using several passes of repetitive corrugation and straightening on sheets made of pure copper. Experimental stress–strain curves are determined before and after processing in order to study the influence of the process on the mechanical properties. The modelling of the mechanisms responsible of the mechanical properties evolution is done through the development of an extended Gurson model including a dislocation-based modelling of hardening. The model developed is implemented into a finite element code and applied to the numerical prediction of the repetitive corrugation and straightening followed by a tensile test. The modifications of strength and ductility predicted numerically are qualitatively in good agreement with the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call