Abstract

The stochastic equation Z=dV(X+Z), where V, X and Z are independent, has a wide range of applications in finance, insurance, telecommunications and time series analysis. Dufresne[8,9] solves for some specific cases of this equation by the algebraic properties of beta and gamma distributions. This paper aims to generalise Dufresne’s results to beta and Mittag–Leffler distributions and solve for new specific distributions of Z.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.