Abstract

We consider a new class of processes, called LG processes, defined as linear combinations of independent gamma processes. Their distributional and path‐wise properties are explored by following their relation to polynomial and Dirichlet (B‐)splines. In particular, it is shown that the density of an LG process can be expressed in terms of Dirichlet (B‐)splines, introduced independently by Ignatov and Kaishev and Karlin, Micchelli, and Rinott. We further show that the well‐known variance gamma (VG) process, introduced by Madan and Seneta, and the bilateral gamma (BG) process, recently considered by Küchler and Tappe are special cases of an LG process. Following this LG interpretation, we derive new (alternative) expressions for the VG and BG densities and consider their numerical properties. The LG process has two sets of parameters, the B‐spline knots and their multiplicities, and offers further flexibility in controlling the shape of the Levy density, compared to the VG and the BG processes. Such flexibility is often desirable in practice, which makes LG processes interesting for financial and insurance applications. Multivariate LG processes are also introduced and their relation to multivariate Dirichlet and simplex splines is established. Expressions for their joint density, the underlying LG‐copula, the characteristic, moment and cumulant generating functions are given. A method for simulating LG sample paths is also proposed, based on the Dirichlet bridge sampling of gamma processes, due to Kaishev and Dimitriva. A method of moments for estimation of the LG parameters is also developed. Multivariate LG processes are shown to provide a competitive alternative in modeling dependence, compared to the various multivariate generalizations of the VG process, proposed in the literature. Application of multivariate LG processes in modeling the joint dynamics of multiple exchange rates is also considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.