Abstract
Granular-microstructured rods show strong dependence of grain-scale interactions in their mechanical behavior, and therefore, their proper description requires theories beyond the classical theory of continuum mechanics. Recently, the authors have derived a micromorphic continuum theory of degree n based upon the granular micromechanics approach (GMA). Here, the GMA is further specialized for a one-dimensional material with granular microstructure that can be described as a micromorphic medium of degree 1. To this end, the constitutive relationships, governing equations of motion and variationally consistent boundary conditions are derived. Furthermore, the static and dynamic length scales are linked to the second-gradient stiffness and micro-scale mass density distribution, respectively. The behavior of a one-dimensional granular structure for different boundary conditions is studied in both static and dynamic problems. The effects of material constants and the size effects on the response of the material are also investigated through parametric studies. In the static problem, the size-dependency of the system is observed in the width of the emergent boundary layers for certain imposed boundary conditions. In the dynamic problem, microstructural effects are always present and are manifested as deviations in the natural frequencies of the system from their classical counterparts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have