Abstract

Using a generalized stability indicator L, we explore the stability of the Atlantic meridional overturning circulation (AMOC) during the last deglaciation based on a paleoclimate simulation. From the last glacial maximum, as forced by various external climate forcings, notably the meltwater forcing, the AMOC experiences a collapse and a subsequent rapid recovery in the early stage of deglaciation. This change of the AMOC induces an anomalous freshwater divergence and later convergence across the Atlantic and therefore leads to a positive L, suggesting a negative basin-scale salinity advection feedback and, in turn, a mono-stable deglacial AMOC. Further analyses show that most anomalous freshwater is induced by the AMOC via the southern boundary of the Atlantic at 34°S where the freshwater transport (M ovS ) is about equally controlled by the upper branch of the AMOC and the upper ocean salinity along 34°S. From 19 to 17 ka, as a result of multiple climate feedbacks associated with the AMOC change, the upper ocean at 34°S is largely salinified, which helps to induce a switch in M ovS , from import to export. Our study has important implications to the deglacial simulations by climate models. A decomposition of L shows that the AMOC stability is mostly determined by two terms, the salinity stratification at 34°S and the change of stratification with the AMOC. Both terms appear positive in model. However, the former is likely to be distorted towards positive, as associated with a common bias existing over the South Atlantic in climate models. Therefore, the AMOC is potentially biased towards mono-stability in most paleoclimate simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call