Abstract

Pointer states are states of an open quantum system that are able to survive the constant monitoring of the system by an environment. It has been shown that open systems that are prepared in superpositions of such pointer states quickly decohere and evolve into classical statistical mixtures of (pure) pointer states. In this paper we demonstrate, using appropriate modeling assumptions for the system environment interaction, the following result: An individual trajectory of the system state involves towards a specific pointer state (and not just a statistical mixture of the same) if one monitors the environment state by measuring environmental observables even if only a fraction of these measurement outcomes are known to the observer. The central tool used to demonstrate this is the identification of conserved quantities that correspond to the eigenprojections of the system-environment Hamiltonian. We construct Lyapunov functions using this Hamiltonian to demonstrate the stability of the pointer states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.