Abstract
Pointer states are long-lasting high-fidelity states in open quantum systems. We show how any pure state in a non-Markovian open quantum system can be made to behave as a pointer state by suitably engineering the coupling to the environment via open-loop periodic control. Engineered pointer states are constructed as approximate fixed points of the controlled open-system dynamics, in such a way that they are guaranteed to survive over a long time with a fidelity determined by the relative precision with which the dynamics is engineered. We provide quantitative minimum-fidelity bounds by identifying symmetry and ergodicity conditions that the decoherence-inducing perturbation must obey in the presence of control, and develop explicit pulse sequences for engineering any desired set of orthogonal states as pointer states. These general control protocols are validated through exact numerical simulations as well as semi-classical approximations in realistic single and two qubit dissipative systems. We also examine the role of control imperfections, and show that while pointer-state engineering protocols are highly robust in the presence of systematic pulse errors, the latter can also lead to unintended pointer-state generation in dynamical decoupling implementations, explaining the initial-state selectivity observed in recent experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.