Abstract
The first part of the paper is a physical discussion of the way in which a magnetic field affects the stability of a fluid in motion. Particular emphasis is given to how the magnetic field affects the interaction of the disturbance with the mean motion. The second part is an analysis of the stability of plane parallel flows of fluids with finite viscosity and conductivity under the action of uniform parallel magnetic fields. We show that, in general, three-dimensional disturbances are the most unstable, thus disagreeing with the conclusion of Michael (1953) and Stuart (1954). We show how results obtained for two-dimensional disturbances can be used to calculate the most unstable three-dimensional disturbances and thence we prove that a parallel magnetic field can never completely stabilize a parallel flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.