Abstract

Biogas like other low calorific value fuels has a very narrow stable region when operating in diffusion flame mode owing to their low burning velocity in conjunction with the unburned flow high velocity. This paper presents an experimental study on the effect of the burner geometry on the stability limits of a turbulent non-premixed biogas flame. The main focus of the study is on the role of the low swirl strength of the co-airflow, and the fuel nozzle diameter. The results revealed that the swirl plays a dominant role on the flame mode (attached or lifted) as well as on its operating/stability limits. However, the results revealed that the swirl effect prevails only at relatively moderate to high co-airflow velocity. That is, the swirl does not have an apparent effect at weak co-airflow when the flame is attached. Whereas, it becomes dominant at relatively high co-airflow velocity where the attached flame lifts off and stabilizes at a distance above the burner. Correlations were proposed to describe the lifted biogas flame blowout limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.