Abstract

Alexandrov’s Soap Bubble Theorem dates back to 1958 and states that a compact embedded hypersurface in ℝN with constant mean curvature must be a sphere. For its proof, A. D. Alexandrov invented his reflection principle. In 1977, R. Reilly gave an alternative proof, based on integral identities and inequalities, connected with the torsional rigidity of a bar. In this article we study the stability of the spherical symmetry: the question is how near is a hypersurface to a sphere, when its mean curvature is near to a constant in some norm. We present a stability estimate that states that a compact hypersurface Γ ⊂ ℝN can be contained in a spherical annulus whose interior and exterior radii, say ρi and ρe, satisfy the inequality $$\rho_e - \rho_i \leq C \parallel{H - H_0}\parallel_{L^1(\Gamma)}^{\tau_N},$$ where τN = 1/2 if N = 2, 3, and τN = 1/(N + 2) if N ≥ 4. Here, H is the mean curvature of Γ, H0 is some reference constant, and C is a constant that depends on some geometrical and spectral parameters associated with Γ. This estimate improves previous results in the literature under various aspects. We also present similar estimates for some related overdetermined problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.