Abstract
Abstract We prove that every biharmonic hypersurface having constant higher order mean curvature Hr for r > 2 in a space form M 5(c) is of constant mean curvature. In particular, every such biharmonic hypersurface in 𝕊5(1) has constant mean curvature. There exist no such compact proper biharmonic isoparametric hypersurfaces M in 𝕊5(1) with four distinct principal curvatures. Moreover, there exist no proper biharmonic hypersurfaces in hyperbolic space ℍ5 or in E 5 having constant higher order mean curvature Hr for r > 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.